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ABSTRACT

Motivation: Modern functional genomics generates high-
dimensional datasets. It is often convenient to have a single
simple number characterizing the relationship between pairs of
such high-dimensional datasets in a comprehensive way. Matrix
correlations are such numbers and are appealing since they can be
interpreted in the same way as Pearson’s correlations familiar to
biologists. The high-dimensionality of functional genomics data is,
however, problematic for existing matrix correlations. The motivation
of this article is 2-fold: (i) we introduce the idea of matrix correlations
to the bioinformatics community and (ii) we give an improvement of
the most promising matrix correlation coefficient (the RV-coefficient)
circumventing the problems of high-dimensional data.
Results: The modified RV-coefficient can be used in high-
dimensional data analysis studies as an easy measure of common
information of two datasets. This is shown by theoretical arguments,
simulations and applications to two real-life examples from functional
genomics, i.e. a transcriptomics and metabolomics example.
Availability: The Matlab m-files of the methods presented can be
downloaded from http://www.bdagroup.nl.
Contact: a.k.smilde@uva.nl

1 INTRODUCTION
Functional genomics research generates high-dimensional data,
e.g. transcriptomics, proteomics or metabolomics data. The central
characteristic of these types of data is the low sample-to-variable
ratio. Transcriptomics (or gene-expression) data typically has
thousands of variables and the number of samples is in the order
of tens to hundred. Similar characteristics hold for proteomics
and metabolomics data. Often multiple datasets are available
(i.e. measured) on the same samples of the biological system. This
calls for data fusion methods: methods that are able to extract the
mutual information from all datasets simultaneously (Alter et al.,
2003).

A first useful step in such a data fusion strategy is to probe the
similarity between pairs of datasets in a simple and comprehensive
way (Smilde et al., 2005b). Matrix correlations can be used for
this purpose. These correlations take values between zero and one,
defining a scale of similarity between two matrices. This scale can
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be interpreted in much the same way as the absolute value of the
Pearson correlation coefficient known to biologists. Hence, its use
in functional genomics data fusion can be straightforward.

Matrix correlations have already a long history in multivariate
analysis (Robert and Escoufier, 1976; Yanai, 1974). A comp-
rehensive overview is given in Ramsay et al. (1984). For this article,
we focus our attention on the RV-coefficient as a typical example of
a matrix correlation already in use in metabolomics (Smilde et al.,
2005b). While using the RV-coefficient in a transcriptomics study,
we ran into problems: the RV-coefficient gave high values in almost
all cases. This pointed to trivial results. We explain this trivial result
(i.e. the break-down of the RV-coefficient for high-dimensional data)
and give a solution to circumvent this unwanted behavior.

2 METHODS

2.1 Matrix correlations
The idea of a matrix correlation is to provide a measure of the similarity
of matrices. We start our explanation with matrices X(I ×J) and Y(I ×J)
sharing the row-mode. The latter means that different types of measurements,
e.g. transcriptomics and metabolomics, are performed on the same physical
samples (the requirement that both matrices have an equal number of
columns will be relaxed later). The mapping r :RIJ ×RIJ −→[0,1] is called
a correlation function if for all non-zero scalars a and b for X and Y not both
zero holds that

C1 :r(aX,Y)=r(X,bY)=r(X,Y) (1)

C2 :r(X,Y)=r(Y,X)

C3 :r(X,Y)=1 if X=bY

C4 :r(X,Y)=0 iff X′Y=0

where iff is the abbreviation of if and only if (Ramsay et al., 1984). Matrices
can be similar in a variety of ways; this means that rule C3 can be changed,
e.g. X and Y can have a correlation of one if they only differ by an orthogonal
rotation (X=YQ with Q′Q=I). In that case, the arrangement of the I points
(rows) of X and those of Y is essentially equal apart from the rotation. An
example of a matrix correlation satisfying C1 to C4 is the absolute value of

rin(X,Y)= tr(X′Y)√
tr(X′X)tr(Y′Y)

(2)

which is based on the inner product of two matrices.
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A commonly used matrix correlation which allows for a different
number of columns in X(I ×J1) and Y(I ×J2) is the RV-coefficient
(Robert and Escoufier, 1976):

RV (X,Y)= tr(XX′YY′)√
tr[(XX′)2]tr[(YY′)2] (3)

which is an orientation independent measure, i.e. rotations of the two matrices
do not affect the RV-coefficient (it satisfies C1, C2 and C4, as well as a
relaxed version of C3; Appendix). This is usually a desirable property since
in many functional genomics applications similarities of the configuration of
the samples generated by the two matrices is of interest and not their specific
orientation. Stated otherwise, the relationships between the samples are of
interest not their absolute positions in space.

The RV-coefficient can also be written using the singular value
decomposition (SVD) of both X and Y:

X=U1D1V′
1 =T1V′

1

Y=U2D2V′
2 =T2V′

2 (4)

where U1 and U2 are I ×I orthogonal matrices; D1 and D2 are I ×I diagonal
matrices with the singular values of X and Y, respectively, on their diagonals;
V1(J1 ×I) and V2(J2 ×I) are column-orthogonal matrices (V′

1V1 =
V′

2V2 = I). Then it holds that (Ramsay et al., 1984)

RV (X,Y)=r(U1D2
1U′

1,U2D2
2U′

2), (5)

which can easily be verified by substitution and links the two matrix
correlation coefficients r and RV . Equation (5) shows that directions in
X and Y with more importance (i.e. with high singular values) are given
more importance in calculating the RV-coefficients. This property is valuable
in high-dimensional data because the interest is usually in communality
between important dimensions of the matrices.

Alternative expressions for the RV are

RV (X,Y)= ssq(Y′X)√
ssq(XX′)×ssq(YY′)

(6)

or

RV (X,Y)= Vec(XX′)′Vec(YY′)√
Vec(XX′)′Vec(XX′)×Vec(YY′)′Vec(YY′)

(7)

where ssq means sum-of-squares (the sum of squares of all elements of the
corresponding matrix) and Vec(X) is the symbol for the vectorized version
of X (see Appendix). The similarity with the Pearson correlation between
two vectors x and y becomes clear when writing the latter as

rP(x,y)=

i=I∑
i=1

(xi −x)(yi −y)√[
i=I∑
i=1

(xi −x)2

][
i=I∑
i=1

(yi −y)2

] (8)

where xi, yi and x, y are the typical elements and means, respectively, of the
vectors x, y. Rewriting (8) gives

rP(x,y)= x̃′̃y√
x̃′̃x × ỹ′̃y

(9)

where x̃ is the column-centered version of x and likewise for ỹ. Since
Vec(XX′) and Vec(YY′) in (7) play the same roles as x̃ and ỹ it is clear
that the RV-coefficient can be interpreted as a correlation coefficient. The
interpretation of RV as an association measure becomes even more evident
when the uncentered correlation is used, or Tucker’s congruence coefficient
(Lorenzo-Seva and Ten Berge, 2006)

rT (x,y)= x′y√
x′x×y′y

(10)

which shows that the RV-coefficient bears also similarities with Tucker’s
congruence coefficient.

Fig. 1. Simulation of RV-coefficients with different numbers of samples.
Plotted is the mean, minimum and maximum for 100 repeats each of the RV
as a function of the number of samples.

The RV-coefficient is only independent of a rotation or an overall scaling
of the matrices (RV (X,Y)=RV (αXQ1,βYQ2) for non-zero α and β and
orthogonal Q1 and Q2). All other preprocessing operations are influencing
the RV coefficient, e.g. centering has a profound effect similar to the
difference between centered and uncentered correlations. Hence, the user
has to make a choice regarding the preprocessing and, thus, the metric in
which to compare the matrices. Recommendations to this end are available
in the literature (Bro and Smilde, 2003; van den Berg et al., 2006).

2.2 Problems with the RV-coefficient
While investigating two gene-expression dataset of sizes 5×130 and 5×113
from a functional genomics experiment (Kleeman et al., 2007) high RV-
coefficients were found (values between 0.5 and 0.99). These could neither
directly be understood from the underlying biology nor from independent
calculations more extensively investigating the similarities between the two
datasets. Hence, a small set of initial simulations was performed where
random matrices of the same sizes were generated and RV-coefficients
calculated. Despite the fact that the matrices were drawn from random
numbers (N(0,1)) the RV-coefficient was always high. Increasing the sample
size of the random matrices to 100 samples showed that the RV-coefficient
depends on the sample size.

In an extensive set of simulations with random numbers, the samples sizes
were systematically increased while the other sizes (130 and 113) remained
the same. The result is shown in Figure 1 and shows the problematic behavior.
The behavior of the RV-coefficient was also investigated for moderate and
strongly unequal sizes of the matrices. Figure 2 shows that the problematic
behavior is already visible at much lower numbers of variables (simulations
performed similarly as the ones of Fig. 1).

The reason for the unwanted behavior is as follows. According to (7), the
RV-coefficient can be written as

RV (X,Y)=a′b (11)

with

a= Vec(XX′)
(ssq(XX′)1/2

(12)

b= Vec(YY′)
(ssq(YY′)1/2

.

Now, suppose X and Y are fully random matrices, with elements drawn
from standard normal distributions. When J1 is large, XX′ can be expected
to have diagonal elements close to J1 and off-diagonal elements close to 0.
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Fig. 2. Simulation of RV-coefficient with different numbers of samples and
variables. Plotted are the means of the RV-coefficient from 100 repeats.

Specifically, we can write

[XX′]ii =x′
ixi =J1 +εx

ii (13)

[XX′]ij =x′
ixj =εx

ij,i �= j,

where x′
i denotes the i-th row of X; the values εx

ii (i=1, ... ,I) can be
considered as random draws from a distribution with zero mean and (the
same) standard deviations σx . Likewise, the values εx

ij (i,j=1, ... ,I,i �= j)
can be considered as random draws from a distribution with zero mean
and (the same) standard deviations τx . The reasons for these distributional
properties are as follows. Because xi has random elements from a standard
normal distribution, E(x′

ixi), i.e. the expected value of a sum of J1 squares
of such values, equals J1; the variation across realizations of x′

ixi is the
same for all i, because the elements of the vectors xi are drawn from the
same distributions. Likewise, because xi and xj have independent random
elements, E(x′

ixj)=0, and the variation across realizations of x′
ixj is the same

for all i,j because the elements of all vectors xi and xj are drawn from the
same distributions. When J1 is large, σx and τx can be expected to be small
compared with J1. Indeed, when the elements of X are drawn from standard
normal distributions, it holds that σx =√

2J1 and τx =√
J1, as follows from

general results on stochastic theory for sums and products (Mood et al.,
1974).

Using the above distributional results, we can give approximate
descriptions of the normalized vectors a and b. The numerator of a is the
vector with I values of (J1 +εx

ii) and I(I −1) values εx
ij . Furthermore, we can

approximate the denominator in a as

(ssq(XX′))1/2 ≈ (IJ2
1 +Iσ 2

x +I(I −1)τ 2
x )1/2, (14)

which can be explained as follows. The squares of the I diagonal elements
of XX′ sum to

∑
i(J1 +εx

ii)
2 =∑

i J
2
1 +2

∑
i J1ε

x
ii +

∑
i(ε

x
ii)

2. Now using
that

∑
i J

2
1 = IJ2

1 ,
∑

iε
x
ii ≈0, and that

∑
i(ε

x
ii)

2 ≈ Iσ 2
x , we get IJ2

1 +Iσ 2
x as

approximation of the sum of the squared diagonal values. Furthermore,
the sum of squared off-diagonal values is

∑
i �=j(ε

x
ij)

2 ≈ I(I −1)τ 2
x , which

completes the explanation. Analogously, the numerator of b is the vector
with I values of (J2 +ε

y
ii) and I(I −1) values ε

y
ij , and the denominator in b

can be approximated as

(ssq(YY′))1/2 ≈ (IJ2
2 +Iσ 2

y +I(I −1)τ 2
y )1/2, (15)

Now, the RV-coefficient can be approximated as

RV (X,Y)=a′b= (16)

≈ (IJ1J2)

(IJ2
1 +Iσ 2

x +I(I −1)τ 2
x )1/2(IJ2

2 +Iσ 2
y +I(I −1)τ 2

y )1/2

= (J1J2)

(J2
1 +σ 2

x +(I −1)τ 2
x )1/2(J2

2 +σ 2
y +(I −1)τ 2

y )1/2
,

taking into account that in the numerator of a′b all terms including the
random values εx

ii and ε
y
ii can be expected to roughly cancel. We can further

Table 1. Comparison of derived and simulated RV-values

I Derived RV-values Mean simulated RV-values

20 0.852 0.855
40 0.747 0.748
60 0.665 0.666
80 0.599 0.599
100 0.545 0.545
200 0.376 0.376
300 0.287 0.286
400 0.232 0.232

simplify this expression by using the theoretical values for σx , τx , σy and τy

to obtain

RV (X,Y)≈ (J1J2)

(J2
1 +2J1 +(I −1)J1)1/2(J2

2 +2J2 +(I −1)J2)1/2
(17)

= (J1J2)

(J2
1 +(I +1)J1)1/2(J2

2 +(I +1)J2)1/2
.

From (16) and (17) it can be seen that the value of RV for random data
matrices depends on I: for small I , the RV is close to 1, whereas, as I increases
the denominator increases and the value approaches zero. The accuracy of
these approximations depends on I but as has been verified in simulations
these approximations are typically quite good. Specifically, approximations
by the above approach and mean values for RV over 100 random trials
yielded the results as given in Table 1 showing that the average values of RV
coefficients are very well approximated by the computation of RV according
to (17). Apart from rounding errors, there is a close correspondence between
the approximations [i.e. (17)] and the means of the simulated RV-values.
These results show again that the RV-value is artificially high for small I .
Interestingly, the RV-value for the limiting case, i.e. I =1, leads to an RV-
value of 1, as is easily verified as follows. In the case of I =1, the matrices
XX′ and YY′ reduce to single numbers, and normalizing these trivially leads
to setting these numbers equal to 1, so that the RV-value (i.e. their product)
also equals 1.

2.3 The modified RV-coefficient
2.3.1 Definition A solution to the problem of the RV-coefficient presents
itself by considering the nature of the problem: the numerator of (17) does
not tend to zero for random numbers and large J1 and J2. This can be
traced back to the diagonal of the matrices XX′ and YY′. Indeed, if these
diagonal elements are ignored (or, equivalently, set to zero), then the problem
disappears since, e.g. Vec(XX′) would be a vector of values randomly varying
around zero. After using again (7) this would result in an RV-coefficient of
nearly zero, as should be the case for the two random matrices. This is
then also exactly our proposal for RV2, namely instead of using XX′ use
[XX′ −diag(XX′)]= X̃X′, where diag(XX′) is a matrix containing only the
diagonal elements of XX′ on its diagonal, and zero’s elsewhere. Using the
analogous definition for ỸY′ we get

RV2(X,Y)= Vec(X̃X′)′Vec(ỸY′)√
Vec(X̃X′)′Vec(X̃X′)×Vec(ỸY′)′Vec(ỸY′)

. (18)

Stated otherwise, ignoring the diagonal elements of XX′ and YY′ gives a new
vector a with I values of 0 and I(I −1) values εx

ij . This solves the problem
because the numerator of (17) when using RV2 then becomes zero.

2.3.2 Properties The RV2 has different properties than the original RV.
The most striking one is that RV2 can become negative. Suppose for example
that

XX′ =
(

1 −0.2
−0.2 1

)
, (19)
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Fig. 3. Simulation of the modified RV-coefficient (RV2) with different
numbers of samples (J1 =130, J2 =113). Plotted is the mean, minimum and
maximum for 100 repeats each of the RV2 as a function of the number of
samples.

and

YY′ =
(

1 0.2
0.2 1

)
, (20)

then using (18) gives RV2(X,Y)=−1. If instead

XX′ =
(

1 0.2
0.2 1

)
, (21)

then RV2(X,Y)=1. The interpretation of RV2 =−1 is that the association
between the rows of X is proportional to the association between the rows
of Y but with a negative sign (equivalent to a negative Pearson correlation).

The RV2 depends only on the cross-products XX′ and YY′, thus the RV2

is also orientation independent. The RV2 has values in-between −1 and 1.
This follows immediately from the Cauchy–Schwarz inequality applied to
the vectors in (18).

3 EXAMPLES

3.1 Simulated examples
Two simulation examples will be used to illustrate the working of the
modified RV-coefficient. The first example addresses the (too) large
values of the original RV-coefficient. This example follows closely
the gene-expression dataset in which the problem was initially
encountered. Two datasets X of size (I ×130) and Y of size (I ×113)
were generated 100 times with standard normal distributed numbers.
The number of samples was increased from 20 to 400 with steps
of 20. For each simulation run, the modified RV-coefficient was
calculated. The results are shown in Figure 3.

The second example shows the working of the RV-coefficients
for the case that the amount of overlap between X and Y
gradually increases. Two matrices X and Y were simulated both
of size (10×100) with random numbers drawn from a N(0,1)
distribution and this was repeated 100 times. Gradually, columns
of Y are exchanged with those of X in steps of 10%, 20%,….
Hence, the amount of overlap between X and Y increases. Figure
4 shows the original and modified RV-coefficient. Indeed, the
modified RV-coefficient gradually increases whereas the original
RV-coefficient already has high values from the start.

Fig. 4. Simulation of the original and modified RV-coefficient with different
amounts of overlap. Plotted are the mean, minimum and maximum for 100
repeats RV’s as a function of the amount of overlap.

Table 2. The original and modified RV-values of the gene-expression data
(for abbreviations: see text)

Case Original RV Modified RV

Ct, VA 0.84 0.57
Low, VA 0.94 0.87
High, VA 0.91 0.85
Ct, IC 0.52 0.27
Low, IC 0.55 0.18
High, IC 0.83 0.78

Summarizing, Figures 3 and 4 show that the modified-RV
coefficient has the desired behavior: (i) on average it equals zero
for not related matrices, (ii) for larger sample sizes its variability
decreases and (iii) it increases with an increasing amount of overlap.

3.2 Gene-expression example
The gene-expression example is taken from the paper of Kleeman
et al. (2007). In short, gene-expression profiles were measured in
livers of female ApoE*3L transgenic mice (E3L mice) from three
diet groups (n = 5 mice per group): control diet (Ct, no cholesterol),
low cholesterol diet (Low) and high cholesterol diet (High). Diets
were consumed for 10 weeks. RNA from livers was analyzed using
Affymetrix whole-genome mouse array MOE430-2.0. Subsets of
genes used for matrix correlation were selected based on functional
annotation of genes in biological processes cholesterol metabolism
(C, J = 71) and inflammation (I, J = 66), vascular development
(V, J = 69) and amino-acid metabolism (A, J = 91). Interest focussed
on comparison within the different treatment groups, therefore,
the RV-coefficients were calculated for the VA blocks and the IC
blocks of gene-expressions within each treatment group. All gene-
expression values were expressed as deviations from the average Ct
group ones without further preprocessing.

Table 2 shows that the modified RV-coefficient is always lower
that the original RV-coefficient as it should be. The modified
RV-coefficients are more reasonable from a biological perspective.
All four selected biological processes were enriched in the selection
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of genes differentially expressed in response to cholesterol feeding.
From these, the more pronounced response was found on cholesterol
metabolism (both in response to low and high cholesterol) and
inflammation (high cholesterol) (Kleeman et al., 2007). The dose-
dependent gene-expression responses are likely to result in increased
correlation between the matrices. Contrary, it is not reasonable to
have high correlations between the groups of genes for the control
animals (Ct). Hence, the values of the modified RV-coefficient for the
control groups are more reasonable than the original RV-coefficients.
Also from a statistical point of view, the modified RV-coefficients
are better than the original ones. This will be explained for the
numbers in the first row of Table 2. Consensus-principal component
analysis (CPCA) is an alternative method to probe similarities
between matrices (Smilde et al., 2003). Using PCA on the V and A
matrices individually gives explained variances of 70.0% and 66.9%
for two principal components, respectively. When using CPCA, the
two CPCA components explain 57.4% and 64.9% in each block,
respectively. The drop in explained variances per matrix (especially
for the V block) means that there is some overlap between the
matrices but also differences. This agrees nicely with the much lower
value of 0.57 instead of 0.84. Note that CPCA is used here only to
judge the performance of the modified RV-coefficient. This method
does not give an alternative measure to the RV-coefficient but
shows qualitatively the same behavior as the modified RV-coefficient
supporting the credibility of the latter.

3.3 Metabolomics example
The modified RV-coefficient was applied to a metabolomics dataset
(Smilde et al., 2005a). Metabolites were measured in Escherichia
coli as a model system. The metabolites were measured using
two analytical chemical methods, namely gas-chromatography-
mass spectrometry (GC-MS) and liquid-chromatography-mass
spectrometry (LC-MS). This generated two datasets with dimensions
28×12553 (GC-MS) and 28×2532 (LC-MS) which clearly fit into
the framework of our modified RV-coefficient. The original RV-
coefficient was 0.79 and the modified RV-coefficient was 0.71.
Hence, the difference was not large in this case. The CPCA
analysis performed in the original publication (Smilde et al., 2005a)
showed that both matrices had overlap, but also a substantial non-
overlapping part. Although both types of RV-coefficients did not
differ much in this case, the example is shown to illustrate that the
modified RV-coefficient gives also a reasonable value in this case.

In Smilde et al. (2005a), a truncation was used prior to calculating
the RV-value, i.e. the RV-value was calculated using the first
principal components of both matrices. Simulations (results not
shown) have pointed out that this approach suffers from the same
problems as the RV itself and this approach is therefore not
recommended.

4 CONCLUSION
It is often convenient to obtain insight into the relationships between
blocks of functional genomics data e.g. as a first step in a data
fusion strategy. The modified RV-coefficient is a matrix correlation
giving such an insight with a single number between −1 and 1. This
number can easily be calculated and interpreted in the same way
as an ordinary correlation coefficient. The modified RV-coefficient
is theoretically motivated and tested with simulations and real data.

The results show that this correlation coefficient is reliable and can
be used in bioinformatics practice. This coefficient can also easily
be combined with permutation testing for assessing significance
(Kazi-Aoual et al., 1995) or with bootstrapping to obtain confidence
intervals but that is beyond the scope of this article.
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A APPENDIX

A.1 Notation
x (vector) bold lowercase
X (matrix) bold uppercase
i = 1,…, I object index
j = 1,…, J variable index
r = 1,…, R principal component index

A.2 RV and orientations
Changing the orientation of the sample configuration of X and Y can
be formalized by using arbitrary orthogonal matrices Q1 and Q2 to
rotate X and Y, respectively. Upon defining X̃=XQ1 and Ỹ=YQ2
and observing that the RV-coefficient can be written to depend only
on products XX′, (see (7)) it holds that XQ1(XQ1)′ =XQ1Q′

1X′ =
XX′ due to the orthogonality property of Q1 (and similarly for Y).
Hence, RV (X̃,Ỹ)=RV (X,Y).

The I ×I matrices XX′ are called configuration matrices and
describe the configuration of the I points (rows of X) in
their respective row-spaces. The RV-coefficient only measures
differences in configurations (XX′) and not orientations (Qj).

A.3 RV in Vec notation
The equality that tr(A′B)=Vec(A)′Vec(B) can easily been proven
by writing both tr(A′B) and Vec(A)′Vec(B) in terms of the elements
of the respective matrices. Using this equality in (3) gives (7).
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